United States Department of the Interior
Heritage Conservation and Recreation Service

National Register of Historic Places
Inventory—Nomination Form

See instructions in How to Complete National Register Forms
Type all entries—complete applicable sections

1. Name

historic Kearse Theater
and/or common same

2. Location

street & number 161, 165, and 167 Summers Street

city, town Charleston

county Kanawha

state West Virginia

code

3. Classification

<table>
<thead>
<tr>
<th>Category</th>
<th>Ownership</th>
<th>Status</th>
<th>Present Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>district</td>
<td>public</td>
<td>occupied part</td>
<td>agriculture</td>
</tr>
<tr>
<td>building(s)</td>
<td>private</td>
<td>unoccupied</td>
<td>museum</td>
</tr>
<tr>
<td>structure</td>
<td>both</td>
<td>work in progress</td>
<td>park</td>
</tr>
<tr>
<td>site</td>
<td>Public Acquisition</td>
<td>Under Reserve</td>
<td>private residence</td>
</tr>
<tr>
<td>object</td>
<td>in process</td>
<td>no</td>
<td>religious</td>
</tr>
<tr>
<td>x</td>
<td>being considered</td>
<td>x</td>
<td>scientific</td>
</tr>
</tbody>
</table>

Accessible

x yes: restricted

x yes: unrestricted

4. Owner of Property

Betty Kearse Bobbitt, et. al.

name

street & number P.O. Box 6128

city, town Charlottesville

state Virginia

code 22906

5. Location of Legal Description

courthouse, registry of deeds, etc. Kanawha County Court House

street & number Virginia Street

city, town Charleston

state West Virginia

code 25301

6. Representation in Existing Surveys

title

has this property been determined eligible? yes no

date

federal state county local

depository for survey records

city, town state
7. Description

Condition

- excellent
- deteriorated
- good
- ruins
- fair
- unaltered
- x altered
- unexposed

Check one

x original site
- moved
- date

Describe the present and original (if known) physical appearance

The Kearse Theater building, composed of a single-floor auditorium with balcony behind a three-story front section which includes 2 store fronts, is located in a dense downtown area of Charleston, West Virginia. The theater is structurally detached from the buildings which adjoin it on either side. The building extends the full width of the block it occupies, forming a slightly irregular rectangle. Its dimensions are 221'-6½" x 93'10½" (front) x 216'7 5/8" x 95'-7½". The front section contains the main entry and 2 stores on the ground floor, with a large room on the second floor and a ballroom on the third. The two sections are joined by support facilities which include stairways, offices, projection booth and rest rooms. There is a basement under the front section and under the stage.

Structurally, the foundations are continuous concrete with internal concrete piers and lally columns supporting the stage and front section. The exterior walls are load bearing masonry with bricks laid in a common bond with a header course every 6 rows. All floors are of concrete slab construction. The front section of the building is divided into five structural bays, while the auditorium is completely spanned by a series of Warren trusses 17'-3½" on center. (A maze of plate girders supports the balcony.) The entire building is covered with flat roofs which step up in sections to the fly area which is 62'-0" from ground level. The material used was 3-ply built-up tar and felt.

Entrance to the building is made through a square structural bay which is part of the building, yet open to the outside. A ticket booth now stands in the center of this space. Glass doors leading the foyer are set at the back of this portal-like opening.

The central bay containing the entry is articulated visually by thickened piers, each surmounted by a pointed dome covered in soft copper with standing seams (now painted silver). The central bay is flanked by two wider bays, each of which is composed of two structural bays. The corner piers of these bays are topped by small ornamental turrets. The central bay contains a large, tall opening below a segmental arch. The opening contains six double-hung windows in three vertical rows, each with a transom window forming part of the arch. Each of the flanking bays has six vertical rows of two double-hung windows.

The facade is faced with ornamental terra cotta in "a cream white with ornaments picked out in greens, blues, reds and yellows, finished with a malt glaze" (Specifications, p. 28). The decorative details are Gothic in origin, including trefoil arches, pointed arches, and rows of quatrefoils in diamonds. Terra cotta masks representing Comedy and Tragedy are set at the cornice line at the top of the two piers of the central bay. A row of small drop trefoil arches are set away from the facade at the cornice to conceal indirect lighting. A marquee (not original) is cantilevered out over the sidewalk above the entrance with a vertical section displaying the theater's name.

Actual entry doors to the theater are set at the back of the square structural bay forming the entrance. Through these doors is an interior foyer. Though separated by glass doors, the details of the entry and the foyer are identical. The floor is surfaced with marble of white and brown in a diagonal checker board pattern. There is wainscot of Napoleon grey Tennessee marble, 7'8" thick, green veined Vermont white cloud. The original ticket window is also framed in this marble. The walls are plaster and each square bay of the ceiling is decorated with ornamental plaster work. The offices, storefronts and large rooms above this area have plaster walls
and the ceilings with maple floors, with the exception of the bathrooms which have tile floors and the projection room which has a concrete floor.

The main floor of the theater slopes down to the stage and originally had 31 rows of radial seating (3 front rows have been removed). There are four aisles, two on the far outside and two between the center section of seating and the side seating. Each aisle seat is made of cast iron and embossed with a "K" (see photograph). The mezzanine seating is of a lesser quality and there are only 10 rows. This balcony level also includes 2 rows of boxes, of which 8 are higher and 17 are lower and extend down the sides of the theater. Box railings have plaster ornaments of panels and encircled quatrefoils on them. Both the main floor and the balcony have four sets of exit doors on each side of the theater, for a total of 16 sets. At the very back of the auditorium is a projection booth entered from a small metal stair at the top of the seating area.

The theater ceiling is plaster suspended from trusses. It is elliptical in cross section and the front of the theater it curves in to the proscenium opening. This ceiling configuration is designed to direct sound to the back of the auditorium. In the very back of the room over the balcony seating, the ceiling is flat.

The ceiling is decorated with plasterwork in a variety of designs including interlocking arches and moulding dotted with bosses. Large gratings of cast plaster can be seen in the ceiling above and on either side of the proscenium opening. These cover openings through which the pipe organ's sound entered the room. Where the ceiling meets the wall there is a leaf moulding above a row of dropped trefoil arches with concealed lighting similar to that on the facade.

There is an orchestra pit in front of the stage. The proscenium has a 38'-0" opening and the stage is an average of 35'-0" deep. The back of the stage is at an angle conforming to the angle of the street at the rear. Beyond the wings are the organ wind chambers and two levels of six dressing rooms, each with a window. There is also a large kinnear door through which large equipment could be brought in. Above the stage there is a large sky light in the roof. The stage is supported by a 20" deep plate girder on lally columns and 10"x14" wood rafters 4'-0" on center.
8. Significance

<table>
<thead>
<tr>
<th>Period</th>
<th>Areas of Significance—Check and justify below</th>
</tr>
</thead>
<tbody>
<tr>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>prehistoric</td>
<td>anthropology-prehistoric</td>
</tr>
<tr>
<td>1400-1499</td>
<td>archaeology-prehistoric</td>
</tr>
<tr>
<td>1500-1599</td>
<td>agriculture</td>
</tr>
<tr>
<td>1600-1699</td>
<td>— architecture</td>
</tr>
<tr>
<td>1700-1799</td>
<td>— art</td>
</tr>
<tr>
<td>1800-1899</td>
<td>— commerce</td>
</tr>
<tr>
<td>X 1900-</td>
<td>— communications</td>
</tr>
<tr>
<td></td>
<td>— community planning</td>
</tr>
<tr>
<td></td>
<td>— conservation</td>
</tr>
<tr>
<td></td>
<td>— economics</td>
</tr>
<tr>
<td></td>
<td>— education</td>
</tr>
<tr>
<td></td>
<td>— engineering</td>
</tr>
<tr>
<td></td>
<td>— exploration/settlement</td>
</tr>
<tr>
<td></td>
<td>— industry</td>
</tr>
<tr>
<td></td>
<td>— invention</td>
</tr>
<tr>
<td></td>
<td>— landscape architecture</td>
</tr>
<tr>
<td></td>
<td>— law</td>
</tr>
<tr>
<td></td>
<td>— literature</td>
</tr>
<tr>
<td></td>
<td>— military</td>
</tr>
<tr>
<td></td>
<td>— music</td>
</tr>
<tr>
<td></td>
<td>— philosophy</td>
</tr>
<tr>
<td></td>
<td>— politics/government</td>
</tr>
<tr>
<td></td>
<td>— religion</td>
</tr>
<tr>
<td></td>
<td>— science</td>
</tr>
<tr>
<td></td>
<td>— sculpture</td>
</tr>
<tr>
<td></td>
<td>— social/humanitarian</td>
</tr>
<tr>
<td></td>
<td>— theater</td>
</tr>
<tr>
<td></td>
<td>— transportation</td>
</tr>
<tr>
<td></td>
<td>— other (specify)</td>
</tr>
</tbody>
</table>

Specific dates 1921

Builder/Architect Mills & Millspaugh Co., Columbus Ohio

Statement of Significance (in one paragraph)

When the Kears Theatre in Charleston, Kanawha County, West Virginia, opened in 1922, it was considered the finest facility of its kind in the Kanawha Valley. The work of Mills and Millspaugh Company of Columbus, Ohio, the theater was designed for stage shows as well as for movies. The facility brought Charlestonians not only the best silent films, but vaudeville acts, road shows, concerts, operas, stage plays and, in 1928, the first talking pictures. It was equipped with the latest in projection equipment, a feature which was continually updated through the installation of a Cinemascope screen in the 1950s. A pit for the orchestra which accompanied the silent films was a prominent feature, and the Kears orchestra, directed by Mr. Shallabarger, was widely renowned in the state. A magnificent Austin concert pipe organ featuring huge wind chambers integrated into the building's structure, was the largest individual item of expenditure in the construction of the lavish Kears Theatre. Still in place and able to be restored to working order, the organ is currently the largest concert pipe organ remaining in a theater in West Virginia. It is a most important feature of the Kears Theatre, which stands, largely unaltered, as a significant example of the theater and moving picture house architecture of the early 1920s. The Kears is one of only a handful of old commercial buildings in this condition yet standing in Charleston.

West Virginia governors E. F. Morgan, William A. MacCorkle and Wesley A. Atkinson, and Mayor Grant P. Hall of Charleston participated in the gala opening of the Kears November 26, 1922. Moving pictures of the occasion were made and shown throughout the country. The Charleston Gazette/Daily Mail stated that "never before, in the history of the theatrical business, has a theater opening been attended by such a gathering of statesmen." Newspaper accounts indicate that the opening of the theater was expected to provoke a rejuvenation of Summers Street, a goal which is reiterated today in recommending the nomination of the building to the National Register of Historic Places.

In addition to the theater proper, the building housed two floors of clubrooms and ballroom space. Many civic clubs, including the B'naï B'rith and the Knight of Columbus had headquarters in the Kears Building, and a number of dance clubs, including the Charleston Cotillion, regularly scheduled dances and balls there. The Kears Theater stage was used by the armed forces to put on demonstrations during the Second World War. Regular Opportunity Night events during the decades following the war saw amateur performances by countless talented Charlestonians who were, or went on to become, prominent citizens of the community.
9. Major Bibliographical References

Architectural plans, "The Kearse Theatre Building by Mills & Millsbaugh Company, Columbus, Ohio, June 1, 1921".

Specifications, Set #30, P.S. Phillips, Revised. "The Kearse Theatre Building for The Kanawha Investment Company, Charleston, W.V. / June 1, 1921"

10. Geographical Data

Acreage of nominated property: 1 city lot (20,300 sq. ft.)

Quadrangle name: Charleston West, WV

UMT References

<table>
<thead>
<tr>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>441470</td>
<td>412700</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quadrangle scale: 1:24,000

Verbal boundary description and justification:

Located on Quarrier St., lot #26

The Kearse Theater is located on a city lot (approx. 215' x 94') and is bounded by Summers and Laidley streets, and adjacent lots on the east and west.

11. Form Prepared By

name/title: Susan Cumins, Executive Director & Carter Giltinan, Vice President

organization: Kanawha Arts Alliance

date: August 11, 1980

street & number: City Hall, 4th & D streets

telephone: 204.744-5301

city or town: South Charleston

12. State Historic Preservation Officer Certification

The evaluated significance of this property within the state is:

___ national ___ state ___ local

As the designated State Historic Preservation Officer for the National Historic Preservation Act of 1966 (Public Law 89-665), I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the Heritage Conservation and Recreation Service.

State Historic Preservation Officer signature: [signature]

title: State Historic Preservation Officer
date: October 3, 1980

For HCWS use only

I hereby certify that this property is included in the National Register
date: [date]

Keeper of the National Register

Attest: [Attestation]
date: [Date]

Chief of Registration
Charleston Gazette (Charleston, W.V.) Nov. 5, 1922. Article on opening of Kearse Theater.

Coleman, Ronald. Personal interview, June 8, 1980. (Mr. Coleman was manager of the Kearse Theater for over 25 years).

Wells, Sandy, "The Kearse," Charleston Gazette, April 29, 1980, p. 1B.
PHYSICAL STUDY

THE KEARSE THEATER

Charleston, WV

December 2, 1980

Prepared By:

COOK ENGINEERING, INC
Charleston, WV

and

RUDE & ASSOCIATES, INC.
CONSULTING ENGINEERS
332 6th Ave, South Charleston, West Virginia, 25303
Telephone (304) 744-1305
### INDEX

<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>1</td>
</tr>
<tr>
<td>Existing Plans and Specifications</td>
<td>2</td>
</tr>
<tr>
<td>City of Charleston Building Commission</td>
<td>3</td>
</tr>
<tr>
<td>West Virginia State Fire Commission</td>
<td>4</td>
</tr>
<tr>
<td>Physical Review</td>
<td></td>
</tr>
<tr>
<td>Section 1, Structural</td>
<td>5-10</td>
</tr>
<tr>
<td>Section 2, Mechanical and Electrical</td>
<td>11-14</td>
</tr>
<tr>
<td>Section 3, Furnishings</td>
<td>15-16</td>
</tr>
<tr>
<td>Probable Project Cost</td>
<td>17</td>
</tr>
<tr>
<td>Appendix</td>
<td>18</td>
</tr>
</tbody>
</table>
FOREWORD

The purpose of this study is to review the physical elements of the Kearse Theater. The review will identify problem areas and recommendations will be made for correction. Preliminary cost estimates will be prepared to rehabilitate the building into a safe useable facility.

The study will be based on the front second and third floors being utilized for rehearsals, dance studios and related theatrical activities. The two (2) areas on the first floor in the front will remain commercial spaces.

This study will be coordinated with the Kearse Theater Feasibility Study being prepared by Brannigan – Lorelli Associates, Inc.

This study is based on a preliminary analyses of the building. A detailed analyses will have to be undertaken when final plans are developed.
EXISTING PLANS AND SPECIFICATIONS

Building plans were available for review as prepared by The Mills & Millspaugh Architects and Engineers, Cleveland, Ohio. The plans are dated 1921. There is no index to the plans and therefore, it is not known if all plans are available.

Shop Drawings existed in the office at the Theater and were reviewed. The Shop Drawings were prepared by various fabricators and suppliers.

In regard to specifications, the only specifications available were for mechanical and electrical.
CITY OF CHARLESTON BUILDING COMMISSION

A meeting was held with Orville Smith of the City of Charleston Building Commission. Mr. Smith had been in the building on many occasions and was familiar with the structure. His major comment was that if it was proposed to replace any members, add walls or alter the structure this must be done in accordance with modern day standards with special emphasis on the Fire Code in reference to the use of combustible material for replacement.

In regards to the wood floors, Mr. Smith said that they could remain if sprinklers are installed.
WEST VIRGINIA STATE FIRE COMMISSION

A meeting was held with John Arnold of the State Fire Commission. Comments received from Mr. Arnold are as follows:

1. In regard to a sprinkler system, it may be possible not to sprinkle the auditorium if other measures are done. Mr. Arnold said all other areas including the basement and stage would have to be provided with sprinklers. It was agreed that the auditorium would be sprinkled for the purpose of this study;

2. Fire doors will have to be provided on each floor of the stairway and for doors leading to the stage;

3. A fire curtain will have to be provided in front of the stage;

4. A standpipe will be required on the stage;

5. Smoke detectors and fire alarms will be required;

6. Carpet flame spread shall be equal to or less than 75 rating; and

7. The electrical system must be upgraded to meet the present code.
PHYSICAL REVIEW

A physical review was made of the various elements of the building. A summary of this review follows along with recommendations and preliminary cost estimates if applicable:

SECTION 1, STRUCTURAL

1. Foundations

The plans show details for footings for the various walls and columns in the building and the design shown appears to be adequate. A design check cannot be made without knowing the bearing capacity of the subsurface soils. The condition of the footings could not be observed, however, there was no failure detected from observations in the basement and the outside of the building.

2. Substructure

The basement walls form the substructure for the building. The main walls are constructed of concrete 18 inches thick. Minor walls are constructed of concrete 13 to 17 inches thick. A review of the walls in the basement revealed no structural failure. There is no bulging or major cracking in any of the walls. There is a minor crack in the boiler room which was caused by leakage. This was the only crack or leakage noted in the concrete walls of the basement. This leak and crack can be repaired for an insignificant amount of cost and would be a miscellaneous item for rehabilitating the building.

3. Brick Bearing Walls

The main bearing walls for the auditorium and stage are constructed of brick 18 inches thick. There were two (2) cracks observed in these brick walls:
One crack was on the center of the wall on Laidley Street and it extended from the top down about 15 feet. This crack is apparently due to leakage as it was noted that the crack is at a joint in the flashing.

There was a small vertical crack in the wall next to the parking lot on a corner. The exact cause of this crack could not be determined, however, it is not felt to be a significant structural problem.

Both cracks should be repaired and sealed to prevent moisture entering and causing additional cracking.

The brick walls for the front portion of the building vary from 13 to 17 inches. From observation there was no structural failure in any of these walls.

Estimated cost of repair..........................$800

4. Floors

The floors in the front portion of the structure are constructed of wood joists with 7/8 inch sheathing and hardwood floors with the exception of certain areas which are reinforced concrete. The maple hardwood floors on the second and third floors must be replaced due to warping that has taken place primarily from the leaking of the roof. It is recommended that the maple flooring be removed and plywood installed over the existing sheathing with a vinyl tile covering. This would allow the second and third floors to be used for rehearsals and dance studios.

Estimated cost for removal and replacement of floors,.,$35,000.

The floor on the first floor in the northeast corner of the building, which is now the location for a finance company, had been shored up with timber beams and posts. The posts show signs of
distress and should be replaced. It is, therefore, recommended that on the first floors, supplementary supports be added to support the floor. These should be constructed with steel beams and columns.

Estimated cost .............................................$17,500

It was found that the design for the second floor was capable of 40 pounds per square foot. The Building Commission informed us that for dance studios and rehearsal halls, this would have to be 60 pounds per square foot. This would require additional columns and beams which would have to start in the basement.

Estimated cost..................................................$27,500

Total Estimated Cost For Floors.........................$80,000.

5. Stage

The maple hardwood stage floor will have to be replaced with a hardwood flooring. There is 3,300 square feet of stage.

Estimated Cost ..............................................$40,000.

Some of the wood beams supporting the stage show cracking. These beams can be supplemented by adding steel beams between the cracked beams.

Estimated cost ..............................................$10,000.

Total Estimated Cost For Stage.........................$50,000.

6. Roof

The roof was examined on November 24, 1980, and it was noted that a recent application of tar had been applied to the roof. This appears, however, to be a temporary measure. During prior visits there were several leaks in the front and during the November 24th visit, when it was raining, there were numerous leaks noted in the auditorium.
The roof over the stage had not been recently repaired. It is recommended that an entire new roof be installed which would include roof drains and downspouts. It is further recommended that insulation be installed on the roof, as it would be very difficult to install inside the building due to the lack of ventilation between the ceiling and roof. The area of the roof is 19,539 square feet.

Estimated Cost ............................................$90,000
Estimated Cost of Drains & Downspouts ...............$5,000.

The joists over the auditorium, a portion of the stage, and a portion of the front do not structurally meet the 30 pounds per square foot live load required. These are generally the areas that leaked and the joists could, also, have been damaged by water. New joists and sheathing will have to be installed in these areas.

Estimated Cost ..............................................$ 70,000.
Total Estimated Cost of Roof, Drains & Downspout $165,000.

7. Windows

A review of the windows concludes that all windows will have to be replaced. The number of windows in the building is 87. This includes both double hung wood windows and stationary panes.

Total Estimated Cost For Windows .....................$25,000.

8. Doors

In accordance with the Fire Codes, fire doors will have to be installed in the stairwells and the exit doors. There are 5 single doors and 17 double doors which will have to be replaced.

Estimated Cost ............................................. $ 25,000.

The Stage Load Door needs to be replaced.

Estimated Cost .............................................$ 25,000.

Total Estimated Cost For Doors .......................$ 50,000.
9. Plastering and Painting

There are large areas on the third floor that need a new ceiling and in many other areas minor patching of the plaster will be required.

Estimated Cost........................................$10,000

There is an estimated 52,000 square feet of wall area in the building which will require painting.

Estimated Cost........................................$25,000.

The ceiling is estimated to be 34,000 square feet to be painted.

Estimated Cost........................................$30,000.

There are many areas of trim painting such as railings, moldings, etc.

Estimated Cost........................................$ 5,000.

There are numerous areas of exterior painting required such as gutters, downspouts, marquee, etc.

Estimated Cost........................................$ 5,000.

Scaffolding: Estimated Cost..........................$25,000.

Total Estimated Cost For Plastering & Painting....$100,000.

10. Tile Repair

The tile on the front of the building must be repointed and caulked to prevent water from entering and destroying the bond.

Total Estimated Cost For Tile Repair................$ 3,000.

11. Fire Escapes

Several supports on the fire escapes require repairs.

Total Estimated Cost For Fire Escape Repairs.......$ 2,500.
12. **Elevator**

The elevator in the building must be replaced with modern day equipment. This elevator must, also, be extended to the third floor for the handicapped.

Total Estimated Cost For Elevator............$125,000.

---

13. **Trusses**

The steel trusses in the ceiling of the auditorium cannot be viewed. They appear satisfactory as there is no apparent settlement in the roof and no structural failure noted in the ceiling.

---

14. **Dressing Rooms**

There are nine (9) dressing rooms which require renovation.

Total Estimated Cost.........................$13,500.

---

**STRUCTURAL PROBABLE COST SUMMARY**

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick Bearing Walls</td>
<td>$800</td>
</tr>
<tr>
<td>Floors</td>
<td>80,000</td>
</tr>
<tr>
<td>Stage</td>
<td>50,000</td>
</tr>
<tr>
<td>Roof</td>
<td>165,000</td>
</tr>
<tr>
<td>Windows</td>
<td>25,000</td>
</tr>
<tr>
<td>Doors</td>
<td>50,000</td>
</tr>
<tr>
<td>Plastering and Painting</td>
<td>100,000</td>
</tr>
<tr>
<td>Tile Repair</td>
<td>3,000</td>
</tr>
<tr>
<td>Fire Escapes</td>
<td>2,500</td>
</tr>
<tr>
<td>Elevator</td>
<td>125,000</td>
</tr>
<tr>
<td>Dressing Rooms</td>
<td>13,500</td>
</tr>
</tbody>
</table>

Subtotal: 614,800

Administrative, Consultant Fees, Misc. Items and Contingencies: 185,000

Total: 800,000
SECTION 2, MECHANICAL AND ELECTRICAL

1. Heating and Air Conditioning

The present heating system includes a gas fired steam boiler which appears to be relatively new and can be used for heating the existing building; the system further includes steam supply piping, condensate return piping, condensate return pump, cast iron radiators and heating coils in ductwork. Many of the cast iron radiators have been disconnected and are not in service.

The air conditioning system presently serves the theater area only; conditioned air is supplied by an overhead duct system with the return air going back to the central supply fan in the basement through return grilles in the stage. Refrigeration is provided by two (2) York refrigeration compressors, liquid receiver, piping and a refrigerant condenser. This equipment could be put in shape to reuse, but it is not recommended.

It is recommended that the two (2) steam boilers not in use be removed and that the newer boiler be reused, but that it be converted to a water boiler as opposed to steam; a hot water heating system is more efficient, easier and cheaper to maintain and the heating can be controlled more accurately. In effect a hot water system will also be more energy efficient than the existing steam system.

It is further recommended that the existing refrigeration system be removed and two (2) new air cooled chillers be installed; one chiller for the theater and one for the remainder of the building. The theater would only be cooled when in use and the remainder of the building could be heated and cooled as required based on building use.

New air handling units with ductwork, grilles and diffusers would be installed to provide heating and cooling to all areas of the building, except the theater and stores that are presently under lease to others. The present ductwork serving the theater area would be reused,
however, the ductwork would be modified and diffusers added to make a better more efficient system; the existing insulation should also be replaced and the return air system modified to accommodate new hot water heating and chilled water cooling coils.

A new temperature control system would be installed so that individual heating and cooling systems could be operated as opposed to heating and cooling all areas; this system will be arranged so that minimum heating will be provided when the building is unoccupied, however, override features will be provided so that certain areas can be used in the evening if required. The intent is to make the systems as energy efficient as possible within the confines of the present building structure.

Estimated Cost............................................$410,000.

2. Plumbing

The existing toilet facilities are minimal and many of the fixtures are broken or inoperative.

It is recommended that existing fixtures be replaced and additional toilet facilities be provided and that shower facilities be provided in the dressing room areas.

Portions of the plumbing piping system should be replaced, however, this will take a detailed inspection to determine the exact amount of replacement work; a moderate amount of money is included in the cost estimates to cover portions of this work.

The present ballroom is to be repaired and this will require that all roof drains be replaced also and portions of the rain water conductors; the bowls of roof drains and all horizontal drain piping will have to be insulated.

Estimated Cost............................................$76,000.
3. Automatic Sprinkler System

The entire building including the basement will have to be sprinkled; a conventional wet pipe sprinkler system will be used. In areas subject to freezing temperatures will require a dry pipe system or an anti-freeze solution in this portion of the system, whichever proves the most economical will be used.

In certain areas of the building, sprinklers will have to be installed above and below the ceiling construction due to the combustible materials used in this building.

The sprinkler system will be tied into the fire alarm system and will meet all requirements of the NFPA and the West Virginia State Fire Marshall.

Estimated Cost...........................................$181,000.

4. Electrical

The present system does not meet current code requirements and will be removed or abandoned in place as feasible.

Install a new electrical service and a complete system of power and lighting throughout the building including new panels, switches, wiring, conduit, motor starters, receptacles, etc., all conforming to applicable code requirements.

New lighting fixtures would be installed compatible with the use of the various areas.

A new exit light and emergency lighting system will be installed throughout the building.

Estimated Cost...........................................$252,000.

5. Fire Alarms

A fire alarm system will be installed throughout; this system to be connected to local fire department; the system will also monitor
the sprinkler system and shut-down the various air handling units by means of smoke detectors installed in return air ducts or in both supply and return air duct systems as required by code.

The system shall also include manual pull stations at exits, smoke detectors and alarm horns. The system to be zoned by floors and areas with a remote annunciator panel in the Lobby.

Estimated Cost ........................................ $11,000.

6. Sound System

A new sound system is recommended to provide voice and music reinforcement only with a headset system for lighting and stage personnel.

The system would provide uniform coverage to all seating areas and would originate at the stage of the main theater only. The system would have provisions for connection to a movie sound system, if required.

Estimated Cost ........................................... $30,000.

7. General

There are no recommendations or costs included for the street level spaces that are presently under lease. All work performed would conform to local, state and national codes or other governing agencies having 'egal jurisdiction.

MECHANICAL AND ELECTRICAL PROBABLE COST SUMMARY

- Heating and Air Conditioning  ........................................ $ 500,000
- Plumbing ................................................................  100,000
- Automatic Sprinkler System ........................................... 200,000
- Electrical ....................................................................... 275,000
- Fire Alarms ...................................................................  20,000
- Sound System ..................................................................  80,000

Subtotal ........................................................................... 1,175,000

Administrative, Consultant Fees, Misc. Items and Contingencies ......................................... 325,000

TOTAL ........................................................................... $1,500,000
SECTION 3. FURNISHINGS

The following is an estimate of furnishings required for the building:

1. Seats
   The seats in the auditorium will have to be renovated. There are 1,827 seats.
   Estimated Cost.................................. $125,000.

2. Carpeting
   The auditorium will require new carpet. This will require 2,000 square yards.
   Estimated Cost.................................. $40,000.

3. Stage Curtain
   A new stage curtain will be required.
   Estimate Cost..................................... $20,000.
   An automatic fire curtain will be required.
   Estimated Cost..................................... $35,000.

4. Gridiron
   A new gridiron will be required above the stage. This will require additional structural supports.
   Estimated Cost.................................... $200,000.

5. Rigging
   An entire new rigging system will be required.
   Estimated Cost.................................... $150,000

6. Orchestra Pit
   The orchestra pit will require refurbishing.
   Estimated Cost.................................... $10,000.
7. Theatrical Lighting
   An entire new system will be required.
   Estimated Cost..............................................$650,000.

8. Marquee
   The marquee will require rehabilitation.
   Estimated Cost..............................................$ 25,000.

9. Furniture
   New furniture will be required for the entire building.
   Estimated Cost..............................................$200,000.

10. Ceiling and Side Coves
    Lighting coves will be required.
    Estimated Cost..............................................$ 35,000.

11. Catwalks
    Catwalks will be required to maintain new lighting.
    Estimated Cost..............................................$ 25,000.

12. Handicapped
    Facilities will be required for the handicapped.
    Estimated Cost..............................................$ 50,000.

13. Organ
    The organ requires rehabilitation.
    Estimated Cost..............................................$150,000

Subtotal..........................................................$1,715,000
Administration, Consultant Fees, Misc. Items & Contingencies..... 385,000
Total Estimated Cost..............................................$2,100,000
PROBABLE PROJECT COST SUMMARY

- Structural ........................................... $ 800,000
- Mechanical and Electrical ....................... 1,500,000
- Furnishings ......................................... 2,100,000
  Subtotal ......................................... 4,400,000
  Project Contingency ............................. 100,000

TOTAL ........................................ $4,500,000
APPENDIX

Basement Plan
First Floor Plan
Second Floor Framing Plan
Third Floor Plan
Longitudinal Section
Rec'd by H.P.
Dec. 17, 1980